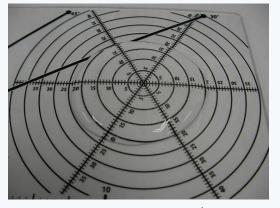
一「とろみ」の適切な指導に向けて一

3. 経腸栄養剤にとろみ調整食品はどのように使用するべきか?

- 1 東京大学医学部 耳鼻咽喉科
- 2 東京大学医学部附属病院 看護部

【はじめに】

- 嚥下障害患者が液体を摂取する際, 誤嚥の危険性を少なくするため, とろみ調整食品を添加することが多い.
- これまで、栄養剤にはとろみが付かない、付きにくいとされてきた。
- ・水分へのとろみの調整方法に関しては一定の基準 (嚥下調整食分類2013,日本摂食嚥下リハビリテーション学会)が提唱されているものの,経腸栄養剤に関しては,明確にされていない。


• 本発表では、一般的に「とろみ剤」や「増粘剤」と言われているものを「とろみ調整 食品」と用語を統一して用いた。

【目的】

- ① 各種経腸栄養剤に種々のとろみ調整食品を使用する際の、粘性の付き方の違いや使用量を検証すること.
- ② 簡易的な粘性測定方法として経腸栄養剤でも Line Spread Test(以下LST)法が活用できるかど うかを検討すること.
- ③ 攪拌と静置時間が粘性に与える影響を検証すること.
 - *本検討では、粘度計を用いて測定した粘性は「粘度」と記載した.

【粘性測定方法】

A) Line Spread Test(LST)法

目盛のついたシートを用いる.

- ⇒直径30 mm のリングに溶液20mlを注入.
- ⇒30 秒間後リングを持ち上げる
- ⇒30 秒後に、溶液の広がりを計測する.
- ★シートの6 方向の目盛(6点)の値を計測し、 平均値を算出してLST値とする.

(Mark A. 2007 Dysphagia)

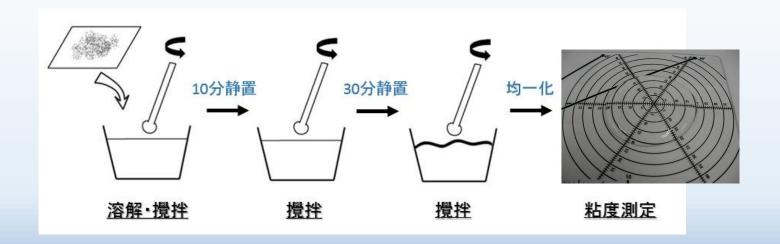
B) 粘度計

音叉式振動式粘度計(㈱A&D, SV-10)を使用

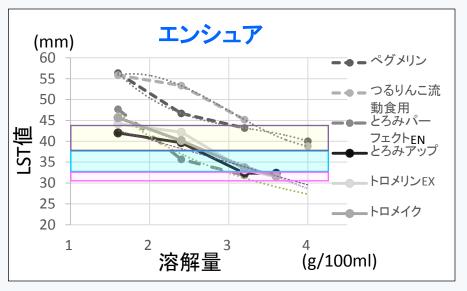
- ▶リアルタイムに経時的な粘性変化の測定可能
- ▶ 非ニュートン流体でも測定可能
- ▶ 測定表示値は、粘度×密度(mPa·s×密度)
- ▶ 測定値を密度で割って粘度を算出

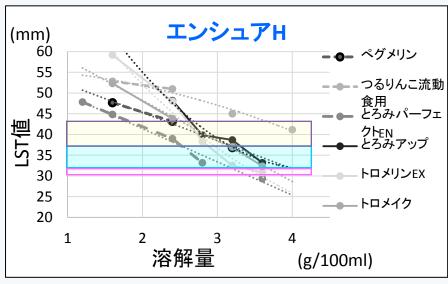
【使用する各種経腸栄養剤・とろみ調整食品】

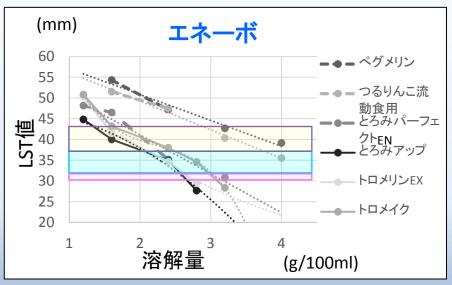
1. 経腸栄養剤

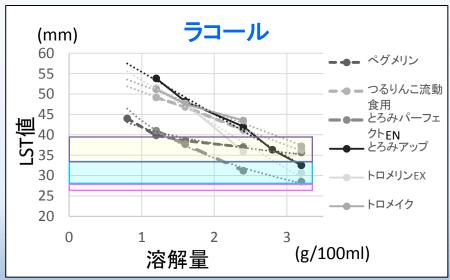

亦不食別		リキッド。	エンシュア・H®	エネーボ™	ラコール®
発売元		㈱アボットジャパン	(株)アボットジャパン	(株)アボットジャパン	㈱イーエヌ大塚製薬
たん白質	g	3.52	5.28	5.4	4.38
脂肪	g	3.52	5.28	3.84	2.23
炭水化物	g	13.72	20.6	15.84	15.62
ナトリウム	g	0.08	0.12	0.092	0.0738
カリウム	g	0.148	0.224	0.12	0.138
塩素	g	0.136	0.204	0.1	0.117
カルシウム	g	0.052	0.08	0.116	0.044
リン	g	0.052	0.08	0.1	0.44
マグネシウム	m g	20	30	20.8	19.3

2. とろみ調整食品


とろみ調整食品	分類	名称	発売元
1	第二世代	トロミアップエース	(株)日清オイリオグループ
2	第三世代	トロメリンEX	㈱三和化学研究所
3		トロメイクSP	㈱明治
4	牛乳•流動食用	ペグメリン	㈱三和化学研究所
5		つるりんこ牛乳・流動食用	(株)クリニコ
6		トロミアップパーフェクトEN	(株)日清オイリオグループ

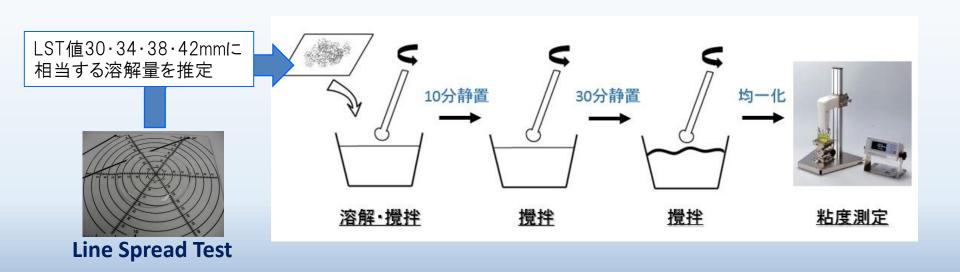

【方法】


- ① 経腸栄養剤にとろみ調整食品を使用時の粘度変化の検証 (LST法)
 - 経腸栄養剤に対して6種類のとろみ調整食品をそれぞれ5段階(測定困難な場合は4段階の値を採用)溶解量で溶解させ,下図のような手順でLST値を計測.
 - LST値を基に近似直線または近似曲線を作成し、溶解量に応じたLST値の変化をグラフ化した.



【結果①】経腸栄養剤別、とろみ調整食品の溶解量に応じたLST値

*嚥下調整食分類2013(摂食嚥下リハ学会)


濃いとろみ:LST 30-32mm 中間のとろみ:LST 32-36mm 薄いとろみ:LST36-43mm

• とろみ調整食品の種類によって、栄養剤に対する粘性の付き方や同じLST値になるための使用量が異なった.

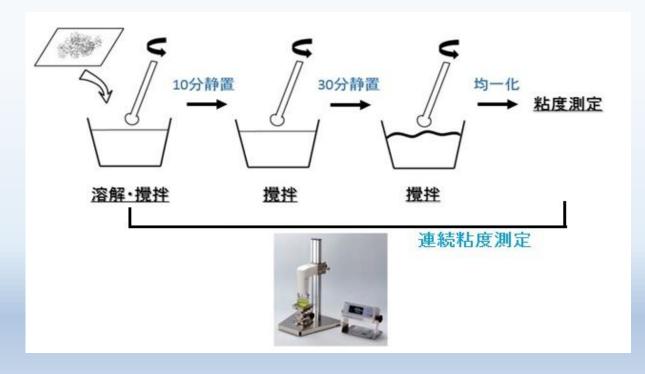
• 経腸栄養剤の種類によっても、粘性が付きやすいとろみ調整食品や同じLST値になるためのとろみ調整 食品の使用量が異なった.

【方法】

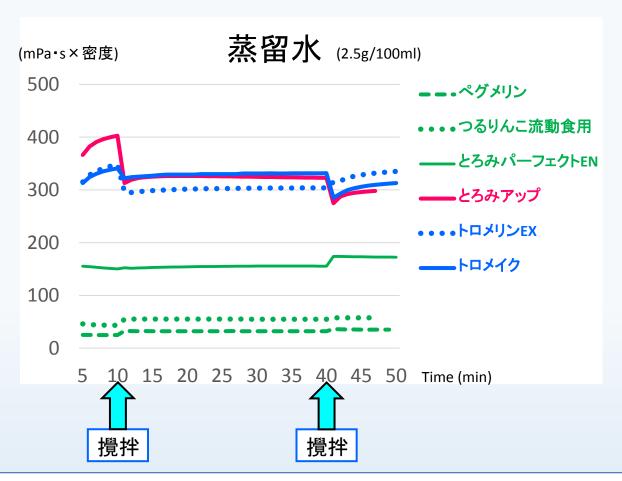
- ② 簡易的な粘性測定方法としてLST法が栄養剤に対して活用できるかどうかの検討。
 - 結果①の近似曲線(直線)より、LST値30mm、34mm、38mm、42mmに 相当する溶解量を推定。
 - 推定溶解量を各種栄養剤に溶解させ、液体の粘度を粘度計で計測.
 - 測定結果をもとに、LST値と粘度との対応を検証.

【結果②】経腸栄養剤別, LST値に対応する粘度測定結果

エンシュア	粘度(mPa•s)										
LST値(mm)	ペグメリン	つるりんこ流動食用	パーフェクトEN	とろみアップ	トロメリンEX	トロメイク					
42	340	197	172	70	116	112					
38	_	_	259	120	177	206					
34	_	<u>-</u>	474	278	316	323					
30	=	-	707	435	408	414					
エンシュアH	エンシュアH 粘度(mPa·s)										
LST値(mm)	ペグメリン	つるりんこ流動食用	パーフェクトEN	とろみアップ	トロメリンEX	トロメイク					
42	322	245	271	142	135	158					
38	418	372	344	233	203	261					
34	699	-	517	334	294	326					
30	822	-	934	413	398	439					
エネーボ	粘度(mPa·s)										
LST値(mm)	ペグメリン	つるりんこ流動食用	パーフェクトEN	とろみアップ	トロメリンEX	トロメイク					
42	409	221	298	62	117	102					
38	642	304	379	111	202	164					
34	-	473	438	233	255	277					
30		-	736	349	391	384					
ラコール	粘度(mPa·s)										
LST値(mm)	ペグメリン	つるりんこ流動食用	パーフェクトEN	とろみアップ	トロメリンEX	トロメイク					
42	86	141	145	109	151	213					
38	167	233	209	196	256	289					
34	686	304	397	303	383	492					
30	_	483	704	376	554	623					

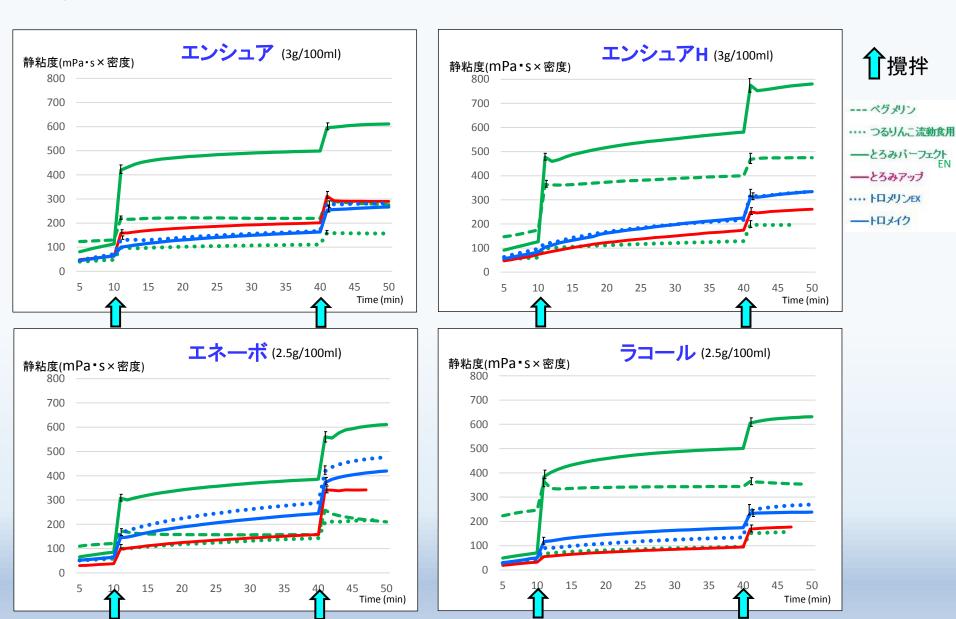

 同じLST値でも、とろみ調整食品の種類によって、 液体の粘度が異なった。

同じLST値でも、粘度は
流動食用 > 第二・三世代 のとろみ調整食品


・粘性が上がるとLST値による測定は困難であった.

【方法】

- ③ 攪拌と静置時間が粘度に与える影響の検証
 - 音叉式振動式粘度計を使用.
 - とろみ調整食品を攪拌後, 粘度計にセットし計測を開始する.
 - 攪拌時間を除き持続的に粘度計で計測を行う.
 - 対照として蒸留水に各種とろみ調整食品を溶解させ, 同様の条件・ 方法で粘性動態に関して経腸栄養剤の場合と比較検討する.



【結果③】攪拌と静置時間が粘度に与える影響

- <u>第二・三世代のとろみ調整食品</u>は, **攪拌により粘性が低下**し, 一定 の粘性を維持または緩やかに増加する傾向を認めた.
- 流動食用のとろみ調整食品では、大きな変化を認めなかった.

攪拌と静置時間が粘度に与える影響

- ・溶解10分後の攪拌
 - ⇒ほぼ全ての場合で粘性が増加.
- 静置30分間
 - ⇒ペグメリン:ほぼ一定の粘性を維持
 - その他:緩徐に粘性が増加(一部例外を除く)
- ・溶解40分後の再攪拌
 - ⇒全ての場合で粘性が増加.

【考察】

- LSTは、水・お茶のようなニュートン流体には有効だが、 経腸栄養剤の粘性判定の為には、 各々の条件に応じた指標作成が必要。
- とろみ調整食品溶解後の攪拌
 - 水: 攪拌で粘度が一度低下し、その後緩やかに上昇⇒チキソトロピー現象
 - ▶ 栄養剤:① 攪拌で粘度が上昇し、その後緩やかに低下⇒レオペクシー現象
 - ② 攪拌を繰り返すとさらに粘度が上昇することが多い.
- とろみ調整食品溶解・攪拌後の静置時間 経時的に粘度が上昇する場合,一定の場合など様々.
- ・ 栄養剤の種類(含有成分;タンパク質・食物繊維・電解質等)・とろみ 調整食品の種類・攪拌・静置時間は粘性に重要な因子である.

【まとめ】

• 経腸栄養剤にとろみ調整食品を加えた場合の粘性に関して, LST法と音叉式振動式粘度計を用いて検証した.

- LST法を経腸栄養剤の簡易的な粘性測定方法として用いる場合には、各条件による「LST値一粘度」の指標作成が必要だと考えられた.
- 攪拌と静置時間が、経腸栄養剤にとろみ調整食品 を加えた場合の粘性に影響を与えていた.

謝辞

本研究にご協力いただきました皆様に感謝申し上げます. (敬称略)

東京大学リハビリテーション部 医師言語聴覚士

東京大学医学部附属病院看護部 看護師長 看護師 看護師 看護師